
APPLYING AOP TO INCREASE
SOLUTION DEVELOPMENT VELOCITY

Sean P. McDonough

Senior Solution Architect and Consultant

Akumina, Inc.

A BIT ABOUT ME …

Started professional career as a polymer chemist for Procter & Gamble
• Transitioned within P&G to Information Systems

Developing software professionally since mid ’90s

Focus has been primarily on SharePoint since 2004

Became a Microsoft MVP in 2016 (Office Apps & Services)

Nowadays, I work for Akumina, Inc.
• Senior Solution Architect and Consultant

Still have Bitstream Foundry going
• Good way to organize my professional activities

• Educational and non-profit technical services

WANT THE CODE?

GitHub: https://github.com/spmcdonough/AOPinSolutionDev

https://github.com/spmcdonough/AOPinSolutionDev

PROBLEMS SOLVED WITH AOP

What sort of “problems are we
actually talking about?”

Let’s illustrate with an

THE EXAMPLE SCENARIO

You’re an architect/developer for a large
organization, and you’ve been tasked with
building a new enterprise-class, full-trust
SharePoint solution, provider-hosted
application, or some other .NET
application.

There are a wide-array of functional and
non-functional requirements you need to
address with your design.

THE EXAMPLE SCENARIO

This box represents your
application

• You need to fill it with the
functionality your users need

• And the best part …

THE EXAMPLE SCENARIO

This box represents your
application

• You need to fill it with the
functionality your users need

• And the best part …

• Greenfield
development!

THE EXAMPLE SCENARIO

First: functional requirements

• The “business end” of what
the application does.

• Ideally driven by stated user
requirements and a
functional specification

THE EXAMPLE SCENARIO

First: functional requirements

• The “business end” of what
the application does.

• Ideally driven by stated user
requirements and a
functional specification

C
O

N
T
A

C
T

M
A

N
A

G
E

M
E

N
T

S
C

H
E

D
U

L
IN

G

A
L
E

R
T

S
 /

R
E

M
IN

D
E

R
S

E
X

P
O

R
T

 C
O

N
T
A

C
T

S

T
E

L
E

P
H

O
N

Y
 T

IE
-I

N
S

EXAMPLE 1

THE EXAMPLE SCENARIO

• If we could stop here, we’d
be happy and could finish
the project feeling like rock
stars.

C
O

N
T
A

C
T

M
A

N
A

G
E

M
E

N
T

S
C

H
E

D
U

L
IN

G

A
L
E

R
T

S
 /

R
E

M
IN

D
E

R
S

E
X

P
O

R
T

 C
O

N
T
A

C
T

S

T
E

L
E

P
H

O
N

Y
 T

IE
-I

N
S

THE EXAMPLE SCENARIO

• In reality, we have a lot more
code to write.

• It’s not really fun code.

• It’s generally not glorious.

• It’s typically not at all
interesting.

• But it’s got to be done for
enterprise applications.

C
O

N
T
A

C
T

M
A

N
A

G
E

M
E

N
T

S
C

H
E

D
U

L
IN

G

A
L
E

R
T

S
 /

R
E

M
IN

D
E

R
S

E
X

P
O

R
T

 C
O

N
T
A

C
T

S

T
E

L
E

P
H

O
N

Y
 T

IE
-I

N
S

EXCEPTION

HANDLING

LOGGING

SECURITY

CACHING

THE EXAMPLE SCENARIO

• Cross-cutting concerns like
• Security

• Exception handling

• Logging

• Caching

• Performance counters

• Thread management

• Dealing with these typically
entails a lot of cutting and
pasting

• Highly repetitive in nature

C
O

N
T
A

C
T

M
A

N
A

G
E

M
E

N
T

S
C

H
E

D
U

L
IN

G

A
L
E

R
T

S
 /

R
E

M
IN

D
E

R
S

E
X

P
O

R
T

 C
O

N
T
A

C
T

S

T
E

L
E

P
H

O
N

Y
 T

IE
-I

N
S

EXCEPTION

HANDLING

LOGGING

SECURITY

CACHING

THE EXAMPLE SCENARIO

• This tends to result in some
less-than-desirable effects
• The repetitive nature of the

code tends to lead to copy-
and-paste re-use.

• As humans, we tend to fatigue
as we do all of this copying
and pasting.

• Repetition and fatigue
inevitably lead to unexpected
and unintentional
deviations/errors.

SECURITY

CACHING

EXAMPLE 2

THE EXAMPLE SCENARIO

Going from this:

THE EXAMPLE SCENARIO

Going from this:

… to this:

THE EXAMPLE SCENARIO

Going from this:

… to this:

not cool

… is a substantial code change (i.e., we tripled our lines of code)

AND IT ONLY GETS WORSE WITH EACH
CONCERN

Adding in some exception handling …

even less cool

AND IT ONLY GETS WORSE WITH EACH
CONCERN

And adding in some caching logic, too … surely you’re

kidding

AND IT ONLY GETS WORSE WITH EACH
CONCERN
We started with this: And ended-up with this:

wanna cry yet?

AND THE WORST PART?

• That was only a single
method in one class.

• Typically, were talking
about countless
methods and
properties and dozens
of classes that need
this treatment.

• It easily gets out of
hand in a hurry.

THERE HAS TO BE A BETTER WAY

THERE HAS TO BE A BETTER WAY

• Instead of having to repeatedly
code all of those cross-cutting
concerns …

C
O

N
T
A

C
T

M
A

N
A

G
E

M
E

N
T

S
C

H
E

D
U

L
IN

G

A
L
E

R
T

S
 /

R
E

M
IN

D
E

R
S

E
X

P
O

R
T

 C
O

N
T
A

C
T

S

T
E

L
E

P
H

O
N

Y
 T

IE
-I

N
S

EXCEPTION

HANDLING

LOGGING

SECURITY

CACHING

THERE HAS TO BE A BETTER WAY

• … there should be a way
to code them once and re-
apply them in pattern or
template form.

• You may have tried to
tackle this need with
specific classes, but that
usually drives up
complexity and line counts
in its own way.

• Guess what?
C

O
N

T
A

C
T

M
A

N
A

G
E

M
E

N
T

S
C

H
E

D
U

L
IN

G

A
L
E

R
T

S
 /

R
E

M
IN

D
E

R
S

E
X

P
O

R
T

 C
O

N
T
A

C
T

S

T
E

L
E

P
H

O
N

Y
 T

IE
-I

N
S

EXCEPTION

HANDLING
LOGGING

SECURITY

CACHING

THAT’S WHAT AOP IS ALL ABOUT

• Cross-cutting concerns are
encapsulated in special
classes called aspects.

• Business logic remains
clear of redundant
plumbing code.

• This reduces clutter and
overall line counts.

• Simplifies maintenance
significantly. C
O

N
T
A

C
T

M
A

N
A

G
E

M
E

N
T

S
C

H
E

D
U

L
IN

G

A
L
E

R
T

S
 /

R
E

M
IN

D
E

R
S

E
X

P
O

R
T

 C
O

N
T
A

C
T

S

T
E

L
E

P
H

O
N

Y
 T

IE
-I

N
S

EXCEPTION

HANDLING
LOGGING

SECURITY

CACHING

EXAMPLE 3

FREQUENTLY ASKED QUESTION

“AOP seems pretty neat, but
if it is so useful, how come I
haven’t seen it ‘in the wild’
by (or before) now?”

FREQUENTLY ASKED QUESTION

• Aspects come in many forms

• If you weren’t explicitly looking,
you may have seen them and
didn’t recognize them.

FREQUENTLY ASKED QUESTION

• Aspects come in many forms

• If you weren’t explicitly looking,
you may have seen them and
didn’t recognize them.

• Have you heard of or used HTTP
Modules during development?

https://docs.microsoft.com/en-us/troubleshoot/aspnet/http-modules-handlers
https://docs.microsoft.com/en-us/troubleshoot/aspnet/http-modules-handlers

FREQUENTLY ASKED QUESTION

• Aspects come in many forms

• If you weren’t explicitly looking,
you may have seen them and
didn’t recognize them.

• Have you heard of or used HTTP
Modules during development?

• How about ASP.NET MVC Custom
Action Filters?

• Both of the above adhere to AOP
concepts and patterns.

https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/hands-on-labs/aspnet-mvc-4-custom-action-filters
https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/hands-on-labs/aspnet-mvc-4-custom-action-filters

AOP TOOLS AND PRODUCTS

• My AOP tool of choice: PostSharp

• Built my SharpCrafters / PostSharp
Technologies (Gael Fraiteur, CEO)

• Comes in both commercial (i.e.
paid) and community (i.e. free)
editions

• Everything I have demonstrated and
will show will use capabilities that
are part of the FREE (community)
version of PostSharp.

https://www.postsharp.net/

IMPLEMENTING AND USING AN ASPECT

• Must follow these basic rules (specific to PostSharp)
• Must be adorned with [PSerializable] attribute

• PostSharp will yell at you if you don’t do this

• Must inherit from / implement a PostSharp base class
• Our LoggingAspect implemented OnMethodBoundaryAspect

• Others are available depending on your version of PostSharp

• Your “business logic” must be decorated with an aspect-specific attribute
determined by the name of the aspect class you want to use
• Our Example 03 class was adorned with the [LoggingAspect] attribute

• For more granular application, method adornment can be used with attributes

• To implement an aspect across a project, apply attribute at the assembly level

WHAT ABOUT OTHER WAYS TO DO AOP?

• You don’t need PostSharp to do AOP
with .NET.

• Check out the Castle Project and its
Dynamic Proxy for an alternative
(inversion of control) approach.

• I favor PostSharp for several reasons:
• Provides cleanest separation of code

• Professionally maintained

• Low cost of entry / “it just works”

• Employs compile-time weaving

http://www.castleproject.org/projects/dynamicproxy/
http://www.castleproject.org/projects/dynamicproxy/
https://en.wikipedia.org/wiki/Inversion_of_control

COMPILE TIME *WHAT*?

• Compile-time weaving.

• No, we’re not talking about
basket weaving and associated
container “technologies.”

• This is probably a good time to
introduce some domain-specific
terminology that you’ll likely hear
if you spend any time with AOP.

AOP DOMAIN CONCEPTS AND TERMS

• Let’s start with a snippet of the
LoggingAspect we’ve seen

AOP DOMAIN CONCEPTS AND TERMS

• Let’s start with a snippet of the
LoggingAspect we’ve seen

• The aspect class and code itself
are known as advice

AOP DOMAIN CONCEPTS AND TERMS

• Let’s start with a snippet of the
LoggingAspect we’ve seen

• The aspect class and code itself
are known as advice

• Matt Groves (who wrote “AOP in
.NET”) defines join points as
places that can be defined
between logical steps of the
execution of your program”

https://www.manning.com/books/aop-in-net
https://www.manning.com/books/aop-in-net

AOP DOMAIN CONCEPTS AND TERMS

• Let’s start with a snippet of the
LoggingAspect we’ve seen

• The aspect class and code itself
goes by the term advice

• Matt Groves (who wrote “AOP in
.NET”) defines join points as
places that can be defined
between logical steps of the
execution of your program”

• The areas with red arrows would
be join points for our aspect.

AOP DOMAIN CONCEPTS AND TERMS

• A set of join points is known as a
pointcut. Pointcuts are points
where execution transitions into
and out of your advice (aspect).

AOP DOMAIN CONCEPTS AND TERMS

• A set of join points is known as a
pointcut. Pointcuts are points
where execution transitions into
and out of your advice (aspect).

• Pointcuts are integrated with
your business logic through a
process called weaving.

AOP DOMAIN CONCEPTS AND TERMS

• A set of join points is known as a
pointcut. Pointcuts are points
where execution transitions into
and out of your advice (aspect).

• Pointcuts are integrated with
your business logic through a
process called weaving.

• Fact: I can’t talk about this
section without imagining
baskets and crochet. Sad, but
true.

AOP DOMAIN CONCEPTS AND TERMS

• Weaving currently takes place by
two different process depending
on the technology you’re using.

• Run-time weaving happens with
IoC containers and systems like
Castle Dynamic Proxy.

• No special tools required to use

• Relies on run-time reflection

• For (GoF) software pattern fans,
think “decorator” and “proxy”
patterns as associated with AOP.

https://springframework.guru/gang-of-four-design-patterns/

AOP DOMAIN CONCEPTS AND TERMS

• On the other hand, compile-time
weaving uses .NET intermediate
language (IL) integration steps
following compilation to more
tightly and seamlessly integrate
with business logic.

• PostSharp uses compile-time
weaving.

• Allows for some optimization.

• Requires tooling; historically
harder to test …

COMING SOON HERE NOW!

• PostSharp Metalama was
recently released and is available.

• It can replace the MSIL-based
PostSharp we use today.

• It’s a bottom-up rewrite of
PostSharp based on the Roslyn
framework

• Metalama emits .NET code
during compilation that is not
opaque and is very debugger
friendly

https://en.wikipedia.org/wiki/Roslyn_(compiler)
https://en.wikipedia.org/wiki/Roslyn_(compiler)

GO METALAMA?

Should I use PostSharp IL or Metalama?

• I’m still using PostSharp IL for a while
longer because it’s the more mature
product.

• Going forward, I will probably switch to
Metalama at some point. The benefits are
there.

• The choice is yours, but Metalama is
where SharpCrafters are focused.

ASPECT TYPES

• We’ve seen one type – the
OnMethodBoundaryAspect
– in action so far.

• There are many other aspect
types, but the one we’ve seen is
joined by one other in the free
version of PostSharp: the
MethodInterceptionAspect

• You can implement nearly any
type of aspect with these two
types alone.

https://doc.postsharp.net/t_postsharp_aspects_onmethodboundaryaspect
https://www.postsharp.net/get/community
https://www.postsharp.net/get/community
https://doc.postsharp.net/t_postsharp_aspects_methodinterceptionaspect

ONMETHODBOUNDARYASPECT

• Primary Methods
• OnEntry

• OnException

• OnExit

• OnResume

• OnSuccess

• OnYield

OnEntry

OnExit

https://doc.postsharp.net/m_postsharp_aspects_onmethodboundaryaspect_onentry_f7d2c910
https://doc.postsharp.net/m_postsharp_aspects_onmethodboundaryaspect_onexit_f7d2c910

ONMETHODBOUNDARYASPECT

• Parameter type passed:
• MethodExecutionArgs

• Properties
• Arguments

• DeclarationIdentifier

• Exception

• FlowBehavior

• Instance

• Method

• MethodExecutionTag

• ReturnValue

• YieldValue

OnEntry

OnExit

https://doc.postsharp.net/t_postsharp_aspects_methodexecutionargs

ONMETHODBOUNDARYASPECT

• Notes
• Statically scoped aspect

• One instance of aspect used to service all calls for aspect

• Storing data across method calls isn’t inherently safe

• If thread-safety is needed, use the MethodExecutionTag or implement the
IInstanceScopedAspect interface in your aspect.

• IL Optimization
• Since arguments are boxed/unboxed when sent to the aspect, PostSharp avoids

processing unused parameters that aren’t actually used.

• Common uses
• Repetitive tasks

• Logging, tracing, performance profiling, exception handling

https://doc.postsharp.net/p_postsharp_aspects_methodexecutionargs_methodexecutiontag
https://doc.postsharp.net/t_postsharp_aspects_iinstancescopedaspect
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/boxing-and-unboxing

METHODINTERCEPTIONASPECT

• Primary Method
• OnInvoke

OnInvoke

https://doc.postsharp.net/m_postsharp_aspects_methodinterceptionaspect_oninvoke_5ba43ce6

METHODINTERCEPTIONASPECT

• Parameter type passed:
• MethodInterceptionArgs

• Properties
• Arguments

• AsyncBinding

• Binding

• DeclarationIdentifier

• Instance

• IsAsync

• Method

• ReturnValue

OnInvoke

https://doc.postsharp.net/t_postsharp_aspects_methodinterceptionargs

METHODINTERCEPTIONASPECT

• Notes
• Running your method code is actually optional

• Slightly reduced clarity (small downside) with everything happening in one
method

• IL optimization cannot occur

• Shared state benefits (since atomic call happens with OnInvoke)

• Common uses
• Wrapper nature good for certain code needs

• Caching, retry support, multi-threading assistance, lazy loading

OUR REMAINING DEMOS WILL USE …

EXAMPLES 4+

Final

Questions

?

WRAP-UP AND CONTACT INFO

58

Sean P. McDonough
sean@SharePointInterface.com

sean.mcdonough@akumina.com

Twitter:

Blog:

About:

LinkedIn: https://www.linkedin.com/in/smcdonough/

@spmcdonough

https://SharePointInterface.com/

https://spmcdonough.com/

mailto:sean@SharePointInterface.com
mailto:sean.mcdonough@akumina.com
https://www.linkedin.com/in/smcdonough/
https://twitter.com/spmcdonough
https://sharepointinterface.com/
https://spmcdonough.com/

	Slide 1: APPLYING AOP TO INCREASE SOLUTION DEVELOPMENT VELOCITY
	Slide 2: A BIT ABOUT ME …
	Slide 3: WANT THE CODE?
	Slide 4: PROBLEMS SOLVED WITH AOP
	Slide 5: THE EXAMPLE SCENARIO
	Slide 6: THE EXAMPLE SCENARIO
	Slide 7: THE EXAMPLE SCENARIO
	Slide 8: THE EXAMPLE SCENARIO
	Slide 9: THE EXAMPLE SCENARIO
	Slide 10: EXAMPLE 1
	Slide 11: THE EXAMPLE SCENARIO
	Slide 12: THE EXAMPLE SCENARIO
	Slide 13: THE EXAMPLE SCENARIO
	Slide 14: THE EXAMPLE SCENARIO
	Slide 15: EXAMPLE 2
	Slide 16: THE EXAMPLE SCENARIO
	Slide 17: THE EXAMPLE SCENARIO
	Slide 18: THE EXAMPLE SCENARIO
	Slide 19: AND IT ONLY GETS WORSE WITH EACH CONCERN
	Slide 20: AND IT ONLY GETS WORSE WITH EACH CONCERN
	Slide 21: AND IT ONLY GETS WORSE WITH EACH CONCERN
	Slide 22: AND THE WORST PART?
	Slide 23: THERE HAS TO BE A BETTER WAY
	Slide 24: THERE HAS TO BE A BETTER WAY
	Slide 25: THERE HAS TO BE A BETTER WAY
	Slide 26: THAT’S WHAT AOP IS ALL ABOUT
	Slide 27: EXAMPLE 3
	Slide 28: FREQUENTLY ASKED QUESTION
	Slide 29: FREQUENTLY ASKED QUESTION
	Slide 30: FREQUENTLY ASKED QUESTION
	Slide 31: FREQUENTLY ASKED QUESTION
	Slide 32: AOP TOOLS AND PRODUCTS
	Slide 33: IMPLEMENTING AND USING AN ASPECT
	Slide 34: WHAT ABOUT OTHER WAYS TO DO AOP?
	Slide 35: COMPILE TIME *WHAT*?
	Slide 36: AOP DOMAIN CONCEPTS AND TERMS
	Slide 37: AOP DOMAIN CONCEPTS AND TERMS
	Slide 38: AOP DOMAIN CONCEPTS AND TERMS
	Slide 39: AOP DOMAIN CONCEPTS AND TERMS
	Slide 40: AOP DOMAIN CONCEPTS AND TERMS
	Slide 41: AOP DOMAIN CONCEPTS AND TERMS
	Slide 42: AOP DOMAIN CONCEPTS AND TERMS
	Slide 43: AOP DOMAIN CONCEPTS AND TERMS
	Slide 44: AOP DOMAIN CONCEPTS AND TERMS
	Slide 45: COMING SOON HERE NOW!
	Slide 46: GO METALAMA?
	Slide 47: ASPECT TYPES
	Slide 48: ONMETHODBOUNDARYASPECT
	Slide 49: ONMETHODBOUNDARYASPECT
	Slide 50: ONMETHODBOUNDARYASPECT
	Slide 51: METHODINTERCEPTIONASPECT
	Slide 52: METHODINTERCEPTIONASPECT
	Slide 53: METHODINTERCEPTIONASPECT
	Slide 54: OUR REMAINING DEMOS WILL USE …
	Slide 55: EXAMPLES 4+
	Slide 56
	Slide 57: WRAP-UP AND CONTACT INFO
	Slide 58
	Slide 59

