Q
APPLYING AOP TO INCREASE

SOLUTION DEVELOPMENT VELOCITY

Sean P. McDonough
Senior Solution Architect and Consultant
- Akumina, Inc.

Y bicstron,

A BIT ABOUT ME ... ! akumina.

X——C——0—(CHy)7(0)7—Si(R")3.mZn

Started professional career as a polymer chemist for Procter & Gamble

¢

* Transitioned within P&G to Information Systems
Developing software professionally since mid "90s

Focus has been primarily on SharePoint since 2004 Microsoft-
Most Valuable

Became a Microsoft MVP in 2016 (Office Apps & Services) Professional
Nowadays, | work for Akumina, Inc.

»
e Senior Solution Architect and Consultant aKumIna®

Still have Bitstream Foundry going

* Good way to organize my professional activities
e Educational and non-profit technical services

bitstream

FOUNDRY

WANT THE CODE? akumina.

= O spmcdonough / AOPinSolutionDev Q Type (/) to search > + - CRERYREN= @

<> Code (® Issues 19 Pullrequests () Actions [Projects OO wiki @ Security |~ Insights 2 Settings

@ AOPiInSolutionDev Public <2 Pin ® Unwatch 1 ~ % Fork 0 - 7 Star 0 v

¥ master ~ ¥ 1branch 0 tags Go to file Add file » <> Code ~ About by

Code to accompany my conference

* spmcdonough Cleanup of imported namespaces and other items 6e21cas 6 minutes ago) 3 commits session, "Applying AOP to Increase
Solution Development Velocity."

[AOPinSolutionDev Cleanup of imported namespaces and other items 6 minutes ago
&3 MIT license

[9 .gitattributes Add .gitattributes, .gitignore, and LICENSE..txt. 1 hour ago A Activity

[.gitignore Add .gitattributes, .gitignore, and LICENSE.txt. 1 hour ago ¢ O stars

[} AOPinSolutionDev.sin Add project files. 1 hour ago @ 1watching
% 0 forks

[LICENSE.txt Add .gitattributes, .gitignore, and LICENSE.txt. 1 hour ago

. s . : . Releases

Help people interested in this repository understand your project by adding a README. Add a README
No releases published
Create a new release

9 -

GitHub: https://github.com/spmcdonough/AOPinSolutionDev

https://github.com/spmcdonough/AOPinSolutionDev

PROBLEMS SOLVED WITH AOP akumina.

What sort of “problems are we
actually talking about?”

THE EXAMPLE SCENARIO akuming.

You’re an architect/developer for a large
organization, and you’ve been tasked with
building a new enterprise-class, full-trust
SharePoint solution, provider-hosted
application, or some other .NET
application.

There are a wide-array of functional and
non-functional requirements you need to
address with your design.

THE EXAMPLE SCENARIO akumina.

This box represents your
application —>

* You need to fill it with the
functionality your users need

* And the best part ...

THE EXAMPLE SCENARIO akumina.

This box represents your
application —>

* You need to fill it with the
functionality your users need

* And the best part ...

 Greenfield
development!

THE EXAMPLE SCENARIO akumina.

First: functional requirements

* The “business end” of what
the application does.

* |deally driven by stated user
requirements and a
functional specification

THE EXAMPLE SCENARIO

First: functional requirements

The “business end” of what
the application does.

ldeally driven by stated user
requirements and a
functional specification

akumina.

CONTACT

-
Z
LU
=
L
Q
<
Z
<
=

SCHEDULING

ALERTS /
REMINDERS

EXPORT CONTACTS

TELEPHONY TIE-INS

»
akumindg.

EXAMPLE 1

THE EXAMPLE SCENARIO akumina.

* If we could stop here, we'd
be happy and could finish
the project feeling like rock
stars.

CONTACT
SCHEDULING
ALERTS /
REMINDERS

-
Z
LU
=
L
Q
<
Z
<
=

EXPORT CONTACTS

TELEPHONY TIE-INS

THE EXAMPLE SCENARIO akumina.

* In reality, we have a lot more SECURITY

code to write.

CACHING
* It’s not really fun code.
, _ EXCEPTION
* |t's generally not glorious. HANDLING
* It’s typically not at all LOGGING

interesting.

 Butit’s got to be done for
enterprise applications.

CONTACT
SCHEDULING
ALERTS /
REMINDERS

—
pd
LL
=
L
Q
<
P
<
=

EXPORT CONTACTS
TELEPHONY TIE-INS

THE EXAMPLE SCENARIO akumina.

* Cross-cutting concerns like SECURITY

+ Security
* Exception handling
. HANDLING

Caching

LOGGING
e Performance counters

* Thread management
 Dealing with these typically
entails a lot of cutting and
pasting
* Highly repetitive in nature

THE EXAMPLE SCENARIO akumina.

e This tends to result in some
less-than-desirable effects

* The repetitive nature of the
code tends to lead to copy-
and-paste re-use.

* As humans, we tend to fatigue
as we do all of this copying
and pasting.

e Repetition and fatigue
inevitably lead to unexpected
and unintentional
deviations/errors.

akumina.

| Wikl AT 1 7 BN lwlttm‘m.,%g
| WiLL NOT o iT AN 1| WL K o 1T AN

| WiLL NeT Do T pamnl | WL "”-DO”'%N

EXAMPLE 2

THE EXAMPLE SCENARIO akumina.

Going from this:

private void OperationNol()
{

LoggingSupport.WriteTolLog("It is by caffeine alone I set my mind in motion,\r\n");
}

THE EXAMPLE SCENARIO akumina.

Going from this:

private void OperationNol()

{
LoggingSupport.WriteToLog("It is by caffeine alone I set my mind in motion,K \r\n");
}
... to this:
private void OperationNol()
{
LoggingSupport.WriteTolLog("Entering OperationNol()\r\n");
LoggingSupport.WriteToLog("It is by caffeine alone I set my mind in motion,\r\n");
LoggingSupport.WriteTolLog("Exiting OperationNol()\r\n");

THE EXAMPLE SCENARIO akumina.

~

. . g L |
Going from this: o Ay
iy =
private void OperationNol() Vs
P P ',’"
LoggingSupport.WriteToLog("It is by caffeine alone I set my “7
:
3 “‘\\\' \ \
... to this: | I
private void OperationNol() n Ot COO
{
LoggingSupport.WriteTolLog("Entering OperationNol()\r\n");
LoggingSupport.WriteTolLog("It is by caffeine alone I set my mind in motion,\r\n");
LoggingSupport.WriteTolLog("Exiting OperationNol()\r\n");
¥

... iIs a substantial code change (i.e., we tripled our lines of code)

AND IT ONLY GETS WORSE WITH EACH akumina.
CONCERN

Adding in some exception handling ...

even less cool

private void OperationNol()
{

LoggingSupport.WriteToLog(message: "Entering OperationNol()\r\n");

try
{
LoggingSupport.WriteToLog(message: "It is by caffeine alone I set my mind in motion,\r\n");
}
catch (Exception ex)
i
var exMessage = "Exception encountered in OperationNol";
LoggingSupport.WriteToLog(exMessage);
throw new ApplicationException(exMessage, ex.InnerException);
}
finally
{
LoggingSupport.WriteToLog(message: "Exiting OperationNol()\r\n");
}

AND IT ONLY GETS WORSE WITH EACH akumina.

CONCERN ,
And adding in some caching logic, too ... Su rely yOu re

private void QEerationN01()

i [|
LoggingSupport.WriteToLog(message: "Entering OperationNol()\r\n");
Qb cachedObject ; I I

try
i
St operation@lKeyName = "OPERATIONO1_RESULT";
cachedObject = CacheSupport.Get(operation@lKeyName);
if (null == cachedObject) {
operationOutput = "It is by caffeine alone I set my mind in motion, \r\n";
CacheSupport.Add(operation@lKeyName, operationOutput);

¥
else
{
operationOutput = cachedObject.ToString();
¥
LoggingSupport.WriteToLog(operationOQutput);
3
catch (Exception ex)
{
var exMessage = "Exception encountered in OperationNol";
LoggingSupport.WriteToLog(exMessage);
throw new ApplicationException(exMessage, ex.InnerException);
}
finally
{
LoggingSupport.WriteToLog(message: "Exiting OperationNol()\r\n");
¥

AND IT ONLY GETS WORSE WITH EACH akumina.
CONCERN

We started with this: And ended-up with this:

private void '(')PerationNol()

e private void OperationNol()

LoggingSupport.WriteToLog(message: "It is by caffeine alone I set my mind in motion,\r\n"); L . A . .
ggtng=aep g Y Y ' ! LoggingSupport.WriteToLog(message: "Entering OperationNol()\r\n");
cachedObject ;

operationOutput ;

try
{
St operation®lKeyName = "OPERATIONO1_RESULT";
cachedObject = CacheSupport.Get(operation0lKeyName);
if (null == cachedObject) {
operationOutput = "It is by caffeine alone I set my mind in motion,\r\n";
CacheSupport.Add(operation@lKeyName, operationOutput);
¥
else
{
operationOutput = cachedObject.ToString();
¥
LoggingSupport.WriteToLog(operationOutput);
3
catch (Exception ex)
{

var exMessage = "Exception encountered in OperationNol";
LoggingSupport.WriteToLog(exMessage);

throw new ApplicationException(exMessage, ex.InnerException);
3
finally

i
Wal l I l a ‘ ry yet : LoggingSupport.WriteToLog(message: "Exiting OperationNol()\r\n");
n ¥

AND THE WORST PART? akumina.

e That was only a single
method in one class.

* Typically, were talking
about countless
methods and
properties and dozens
of classes that need
this treatment.

* |t easily gets out of
hand in a hurry.

THERE HAS TO BE A BETTER WAY akumina.

THERE HAS TO BE A BETTER WAY akumina.

* Instead of having to repeatedly SECURITY
code all of those cross-cutting

concerns ...

CACHING

EXCEPTION
HANDLING

LOGGING

CONTACT
SCHEDULING
ALERTS /
REMINDERS

—
pd
LL
=
L
Q
<
P
<
=

EXPORT CONTACTS
TELEPHONY TIE-INS

THERE HAS TO BE A BETTER WAY akumina.

e ...there should be a way
to code them once and re-
apply them in pattern or SECURITY
template form. CACHING

 You may have tried to EHXACNE[;_TI:\?GN
tackle this need with LOGGING

specific classes, but that
usually drives up
complexity and line counts
In its own way.

CONTACT
MANAGEMENT
SCHEDULING
ALERTS/
EXPORT CONTACTS

TELEPHONY TIE-INS

e @Guess what?

THAT’S WHAT AOP IS ALL ABOUT akumina.

* Cross-cutting concerns are
encapsulated in special
classes called aspects. SECURITY

* Business logic remains CACHING

EXCEPTION
clear of redundant HANDLING

plumbing code. LOGGING

e This reduces clutter and
overall line counts.

 Simplifies maintenance
significantly.

CONTACT
MANAGEMENT
SCHEDULING
ALERTS/

EXPORT CONTACTS

TELEPHONY TIE-INS

v
akumindg.

EXAMPLE 3

FREQUENTLY ASKED QUESTION akumina.

“AOP seems pretty neat, but
if it is so useful, how come |
haven’t seen it ‘in the wild’
by (or before) now?”

FREQUENTLY ASKED QUESTION akumina.

e Aspects come in many forms

* If you weren’t explicitly looking,
you may have seen them and
didn’t recognize them.

FREQUENTLY ASKED QUESTION akumina.

ASP.NET HTTP modules and HTTP handlers

04/03/2020 = 4 minutes to read = ‘ o

L]
o AS p e Ct S C O m e I n m a n y fo r m S This article introduces the ASP.NET Hypertext Transfer Protocol (HTTP) modules and HTTP handlers.

Original product version: ASP.NET
Original KB number: 307985

e |f you weren’t exp“CItly IOOking’ Summary
yo u m ay h ave S e e n t h e m a n d HTTP modules and HTTP hendlers are an integral pert of the ASP.NET architecture. While a request is being processed, each request

is processed by multiple HTTP modules (for example, the authentication module and the session module) and is then processed by a

d ° d V4 t e t h single HTTP handler. After the handler has processed the request, the request flows back thraugh the HTTP modules.
Ian t recognize them.

HTTP modules overview

o H a Ve yo u h e a rd Of O r u S e d H I I P Madules are called before and after the handler executes. Modules enable developers to intercept, participate in, or medify each
individual request. Modules implement the IHttpModule interface, which is located in the System.leb namespace.
Modul ing development?
odaules auring deveiopment:

Available events that HTTP modules can synchronize with

An HttpApplication class provides a number of events with which modules can synchronize. The following events are available for

madules to synchranize with on each request. These events are listed in sequential order:

e BeginRequest: Request has been started. If you need to do something at the beginning of a request (for example, display

advertisement banners at the top of each page), synchronize this event.

AuthenticateRequest: If you want to plug in your own custom authentication scheme (for example, look up a user against a

database to validate the password), build @ module that synchronizes this event and authenticates the user how you want to.

AuthorizeRequest: This event is used internally to implement authorization mechanisms (for example, to store your access
control lists (ACLs) in a database rather than in the file system). Although you can override this event, there are not many good
reasons to do so.

® ResolveRequestCache: This event determines if a page can be served from the Output cache. If you want to write your own
caching module (for example, build a file-based cache rather than a memory cache), synchronize this event to determine
whether to serve the page from the cache.

e AcquireRequestState: Session state is retrieved from the state store. If you want to build your own state management module,

synchronize this event to grab the session state from your state store.

https://docs.microsoft.com/en-us/troubleshoot/aspnet/http-modules-handlers
https://docs.microsoft.com/en-us/troubleshoot/aspnet/http-modules-handlers

FREQUENTLY ASKED QUESTION akumina.

ASP.NET MVC 4 Custom Action Filters

. 02/18/2013 + 20 minutes to read - PP E § +« @
* Aspects come in many forms

Download Web Camps Training Kit &'

’ ° ° °
e |[fyo eren'te citly looKin des Action F i ' on i
u W X I I I) ASP.NET MVC provides Action Filters for executing filtering logic sither before or after an action method is called. Acticn Filters are

custom attributes that provide declarative means to add pre-action and post-action behavior to the controller's action methads.

yo u m ay h ave S e e n t h e m a n d In this Hands-on Lab you will create a custom action filter attribute into MvcMusicStore solution to catch controller's requests and
log the activity of a site into a database table. You will be able to add your logging filter by injection to any controller or action.
(] ’ L]
didn’t recognize them.

Finally, you will see the log view that shows the list of visitors.

This Hands-on Lab assumes you have basic knowledge of ASPNET MVC. If you have not used ASP.NET MVC before, we recommend
you to go over ASPNET MVC 4 Fundamentals Hands-on Lab.

 Have you heard of or used HTTP
All sample code and snippets are included in the Web Camps Training Kit, available from at Microsoft-

IVI O d u I e S d u r‘i n g d eve I O p m e nt ? Web/WebCampTrainingKit Releases&'. The project specific to this lab is available at ASRNET MVC 4 Custom Action Filters .
 How about ASP.NET MVC Custom °%t=

In this Hands-On Lab, you will learn how to:

Act i O n F i | t e rS ? o Create a custom action filter attribute to extend filtering capabilities

o Apply a custom filter attribute by injection to a specific level

* Register a custom action filters globally

* Both of the above adhere to AOP Prerequisites
CO n Ce ptS a n d p atte r n S) You must have the following items to complete this lab:

* Microsoft Visual Studio Express 2012 for Web @' or superior (read Appendix A for instructions on how to install it).

Setup

Installing Code Snippets

https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/hands-on-labs/aspnet-mvc-4-custom-action-filters
https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/hands-on-labs/aspnet-mvc-4-custom-action-filters

AOP TOOLS AND PRODUCTS akumina.

* My AOP tool of choice: PostSharp

e Built my SharpCrafters / PostSharp
Technologies (Gael Fraiteur, CEO)

Our initial product, the legendary PostSharp based on MSIL

¢ CO Mes | N bOt h comme rC|a I (l .. rewriting, was a great success. We maintain it by fixing bugs
. . . and updating it to new .NET versions. However, we have
pa | d) an d commun |ty (l.e. free) stopped ac?ding new features and pla'tforms to it. We
ed |t|0 ns suggest using Metalama for new projects.
* Everything | have demonstrated and O

will show will use capabilities that
are part of the FREE (community)
version of PostSharp.

https://www.postsharp.net/

IMPLEMENTING AND USING AN ASPECT akumina

 Must follow these basic rules (specific to PostSharp)
* Must be adorned with [PSerializable] attribute
e PostSharp will yell at you if you don’t do this

 Must inherit from / implement a PostSharp base class
* Our LoggingAspect implemented OnMethodBoundaryAspect
e Others are available depending on your version of PostSharp

* Your “business logic” must be decorated with an aspect-specific attribute
determined by the name of the aspect class you want to use

* Our Example 03 class was adorned with the [LoggingAspect] attribute
* For more granular application, method adornment can be used with attributes
* To implement an aspect across a project, apply attribute at the assembly level

WHAT ABOUT OTHER WAYS TO DO AOP? akumina.

* You don’t need PostSharp to do AOP Costle PFOJGCH'
With . N ET. Build your NET projects on a rock solid

Loundation

e Check out the Castle Project and its
Dvnamic Proxy for an alternative DynamicProxy

Castle DynamicProxy is a library for generating lightweight .NET proxies on the fly at
1 n r 1 n f n t r | a ro a C h runtime. Proxy objects allow calls to members of an object to be intercepted without
I Ve S I O O CO O p p . maodifying the code of the class. Both classes and interfaces can be proxied,

however only virtual members can be intercepted.
DynamicProxy differs from the proxy implementation built into the CLR which requires the proxied class
® I fa VO r POStS h a r p fo r S eve ra I re a S O n S : to extend marshalsyrefobject . Extending mashalsyrefobject to proxy an object can be too
intrusive because it does not allow the class to extend another class and it does not allow transparent
. . proxying of classes.
* Provides cleanest separation of code
Professionally maintained P
“: : ” Proxy objects can assist in building a flexible application architecture because it allows functionality to
LOW COSt Of e nt ry / It J u St WO r kS be transparently added to code without modifying it. For example, a class could be proxied to add

logging or security checking without making the code aware this functionality has been added.

e E m p I OyS CO m p I I e_t I m e We aVI n g For example, NHibernate, an object/relational mapper uses DynamicProxy to provide lazy loading of

data without the domain model classes being aware of this functionality.

You can use DynamicProxy to generate lightweight proxies on the fly for one or more interfaces or even
concrete classes (but only virtual methods will be intercepted).

For more, check out the documentation.

http://www.castleproject.org/projects/dynamicproxy/
http://www.castleproject.org/projects/dynamicproxy/
https://en.wikipedia.org/wiki/Inversion_of_control

COMPILE TIME *WHAT*?

Compile-time weaving.

No, we’re not talking about
basket weaving and associated
container “technologies.”

This is probably a good time to
introduce some domain-specific
terminology that you’ll likely hear
if you spend any time with AOP.

v
akumina.

AOP DOMAIN CONCEPTS AND TERM akumina.

T

-l#region Namespace Imports

e Let’s start with a snippet of the

-lusing System;

1
2
3
i}
I_O i n AS ect We’ve See n 5 |using AOPinSolutionDev.Plumbing;
gg g p 6 |using PostSharp.Aspects;l
7
8
9 | #endregion Namespace Imports
Lo
11
12 Elnamespace AOPinSolutionDev.Aspects
13 |4
L
L5
16 E /// <summary>
L7 /// This method boundary aspect (created with PostSharp) is responsible
L8 /// for handling logging activities for each of the methods with which
L9 /// it is associated.
20 /// </summary>
11 [Serializable]
1 reference
22 internal class LoggingToTextboxAspect : OnMethodBoundaryAspect
2
u |
15
6 E #region Overrides: OnMethodBoundaryAspect
)
28
219 E /// <summary>
30 /// The OnEntry method fires on the join point that occurs just befor
31 /// a method is entered and its first lines of code are executed.
32 /// </summary>
0 references
33 E public override void OnEntry(MethodExecutionArgs args)
34 {
35 CreatelogEntry(args, "Entering Method");
36 H

/// <summary>
/// The OnExit method fires on the join point that occurs

AOP DOMAIN CONCEPTS AND TERMS akumina.

‘—::'l.=;;i

=l#region Namespace Imports

e Let’s start with a snippet of the
LoggingAspect we’'ve seen

lusing System;
using AOPinSolutionDev.Plumbing;
| using PostSharp.Aspects;

| #endregion Namespace Imports

 The aspect class and code itself
are known as advice

Fnamespace AOPinSolutionDev.Aspects
i

— ———— —
OONEWN PO U1 E W

El /// <summary>

L7 /// This method boundary aspect (created with PostSharp) is responsible
L8 /// for handling logging activities for each of the methods with which
L9 /// it is associated.
20 /// </summary>
u | [Serializable]
1 reference
| internal class LoggingToTextboxAspect : OnMethodBoundaryAspect
)
b |
15
6 B #region Overrides: OnMethodBoundaryAspect
)
28
29 H /// <summary>
30 /// The OnEntry method fires on the join point that occurs just befor
31 /// a method is entered and its first lines of code are executed.
32 /// </summary>

0 references
33 B public override void OnEntry(MethodExecutionArgs args)
) {
35 CreatelLogEntry(args, action: "Entering Method");
36 }

/// <summary>
/// The OnExit method fires on the join point that occurs j

AOP DOMAIN CONCEPTS AND TERMS

Practical Aspect-Oriented Programming

Let’s start with a snippet of the
LoggingAspect we’ve seen

The aspect class and code itself
are known as advice

Matt Groves (who wrote “AOP in
.NET”) defines join points as
places that can be defined
between logical steps of the
execution of your program”

Matthew D. Groves
Phil Haack

v
akuminag.

https://www.manning.com/books/aop-in-net
https://www.manning.com/books/aop-in-net

Let’s start with a snippet of the
LoggingAspect we’'ve seen

The aspect class and code itself
goes by the term advice

Matt Groves (who wrote “AOP in
.NET”) defines join points as
places that can be defined
between logical steps of the
execution of your program”

The areas with red arrows would
be join points for our aspect.

AOP DOMAIN CONCEPTS AND TERMS

N
N

N

v
akuminag.

/// <summary>
/// The OnEntry method fires on the join point that occurs just before
/// a method is entered and its first lines of code are executed.
/// </summary>
0 references
public override void OnEntry(MethodExecutionArgs args)
{
CreatelLogEntry(args,
3

action: "Entering Method");

/// <summary>

/// The OnExit method fires on the join point that occurs just after
/// a method is exited and its execution is complete.

/// </summary>

0 references

public override void OnExit(MethodExecutionArgs args)

i

CreatelLogEntry(args, action: "Exiting Method");

N 3

#endregion Overrides: OnMethodBoundaryAspect

AOP DOMAIN CONCEPTS AND TERMS akumina.

 Aset of join points is known as a
pointcut. Pointcuts are points P
where execution transitions into 177 2 method iv entered and its First Uines of code are excouted.

/// </summary>

and out of your advice (aspect).

public override void OnEntry(MethodExecutionArgs args)
i

CreatelLogEntry(args, action: "Entering Method");
¥

/// <summary>

/// The OnExit method fires on the join point that occurs just after
/// a method is exited and its execution is complete.

/// </summary>

0 references

public override void OnExit(MethodExecutionArgs args)
{

CreatelLogEntry(args, action: "Exiting Method");
}

#endregion Overrides: OnMethodBoundaryAspect

AOP DOMAIN CONCEPTS AND TERMS axumina

 Aset of join points is known as a
pointcut. Pointcuts are points
where execution transitions into
and out of your advice (aspect).

* Pointcuts are integrated with
your business logic through a
process called weaving.

AOP DOMAIN CONCEPTS AND TERMS axumina

 Aset of join points is known as a
pointcut. Pointcuts are points
where execution transitions into
and out of your advice (aspect).

* Pointcuts are integrated with
your business logic through a
process called weaving.

e Fact: | can’t talk about this
section without imagining
baskets and crochet. Sad, but

true. \
L\

AOP DOMAIN CONCEPTS AND TERMS axumina

 Weaving currently takes place by
two different process depending
on the technology you’re using.

* Run-time weaving happens with
loC containers and systems like
Castle Dynamic Proxy.

* No special tools required to use

e Relies on run-time reflection

* For (GoF) software pattern fans,

think “decorator” and “proxy”
patterns as associated with AOP. \

https://springframework.guru/gang-of-four-design-patterns/

AOP DOMAIN CONCEPTS AND TERMS axumina

* On the other hand, compile-time
weaving uses .NET intermediate
language (IL) integration steps
following compilation to more
tightly and seamlessly integrate
with business logic.

 PostSharp uses compile-time
weaving.

* Allows for some optimization.

* Requires tooling; historically
harder to test ... m

COMMMGSETON HERE NOW! akurmina.

* PostSharp Metalama was
recently released and is available.

Transforming the compilation using
low-level APIs

* It can replace the MSIL-based
PostSharp we use today.

interfaces and reference them in
source code.

* |t's a bottom-up rewrite of
PostSharp based on the Roslyn
framework

Analyze source code and report
warnings and errors.

Debug and export transformed

e Metalama emits .NET code
during compilation that is not
opaque and is very debugger
friendly

https://en.wikipedia.org/wiki/Roslyn_(compiler)
https://en.wikipedia.org/wiki/Roslyn_(compiler)

GO METALAMA?

Should | use PostSharp IL or Metalama?

I’'m still using PostSharp IL for a while
longer because it’s the more mature
product.

Going forward, | will probably switch to
Metalama at some point. The benefits are
there.

The choice is yours, but Metalama is
where SharpCrafters are focused.

akumina.

Extensible with Roslyn: Overcome the
limitations of Metalama and write
transformations directly with Roslyn.

ASPECT TYPES akumina.

e We've seen one type — the
OnMethodBoundaryAsPect
— in action so far.

 There are many other aspect
types, but the one we’ve seen is
joined by one other in the free

version of PostSharp: the
Me thodInterceptionAspect

* You can implement nearly any
type of aspect with these two
types alone.

https://doc.postsharp.net/t_postsharp_aspects_onmethodboundaryaspect
https://www.postsharp.net/get/community
https://www.postsharp.net/get/community
https://doc.postsharp.net/t_postsharp_aspects_methodinterceptionaspect

ONMETHODBOUNDARYASPECT akumina.

* Primary Methods

* OnEntry —p | ONEntry
* OnException 1
P OnEX|t Erivate void .(.)Eera.tionNol()
LoggingSupport.WriteToLog("It is by caffeine alone I set my mind in motion,\r\n");
* OnResume
* OnSuccess 1
* OnYield

OnExit

https://doc.postsharp.net/m_postsharp_aspects_onmethodboundaryaspect_onentry_f7d2c910
https://doc.postsharp.net/m_postsharp_aspects_onmethodboundaryaspect_onexit_f7d2c910

ONMETHODBOUNDARYASPECT

Parameter type passed:

* MethodExecutionArgs
Properties
™ Arguments |:{Jriva.te void OperationNol()

LoggingSupport.WriteToLog(

* DeclarationIdentifier :
* Exception

* FlowBehavior

e Instance

* Method

* MethodExecutionTag

* ReturnValue

* YieldValue

OnEntry

!

"It is

}

by caffeine alone

OnExit

akumina.

I set my mind in motion,\r\n");

https://doc.postsharp.net/t_postsharp_aspects_methodexecutionargs

ONMETHODBOUNDARYASPECT akumina

* Notes

e Statically scoped aspect
* One instance of aspect used to service all calls for aspect
» Storing data across method calls isn’t inherently safe

* If thread-safety is needed, use the MethodExecutionTag or implement the
IInstanceScopedAspect interface in your aspect.

* |L Optimization

 Since arguments are boxed/unboxed when sent to the aspect, PostSharp avoids
processing unused parameters that aren’t actually used.

e Common uses
* Repetitive tasks
* Logging, tracing, performance profiling, exception handling

https://doc.postsharp.net/p_postsharp_aspects_methodexecutionargs_methodexecutiontag
https://doc.postsharp.net/t_postsharp_aspects_iinstancescopedaspect
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/boxing-and-unboxing

METHODINTERCEPTIONASPECT

Primary Method
* OnInvoke

Onlnvoke

oggingSupport.WriteTolLog

akumina.

https://doc.postsharp.net/m_postsharp_aspects_methodinterceptionaspect_oninvoke_5ba43ce6

METHODINTERCEPTIONASPECT

Parameter type passed:

. MethodIntercePtionArgs

Properties

* Arguments

* AsyncBinding

* Binding

* DeclarationIdentifier
e Instance

e IsAsync

* Method

* ReturnValue

!

Onlinvoke

LoggingSupport.WriteTolLog

akumina.

m n motion, \r\n");

https://doc.postsharp.net/t_postsharp_aspects_methodinterceptionargs

METHODINTERCEPTIONASPECT akumina

* Notes
* Running your method code is actually optional

* Slightly reduced clarity (small downside) with everything happening in one
method

* |L optimization cannot occur
* Shared state benefits (since atomic call happens with OnInvoke)

* Common uses
 Wrapper nature good for certain code needs
e Caching, retry support, multi-threading assistance, lazy loading

OUR REMAINING DEMOS WILL USE ... akumina

« > cC

@ api.chucknorris.io

~
9

2 v BE @ 6 »O0M®

chucknorris.io is a free JSON API for hand curated Chuck

Norris facts. Read more

Subscribe for new Chuck Facts

Enter your email a Subscribe

Retrieve a random chuck joke in JSON format.

GET https://api.chucknorris.io/jokes/random

akumina.

EXAMPLES 4+

Thank you

Final

Questions
f>

h e

WRAP-UP AND CONTACT INFO

How was
the session?

365 EduCon

Fill out the Session Surveys
in the 365 EduCon App and
be eligible to win

Power Platform Conference Microsoft 365 Conference

akumina.

Sean P. McDonough

PSRN <o (@ SharePointinterface.com

RACE CONDIT\QN -
WHO'S THERE? sean.mcdonough@akumina.com

LinkedIn: https://www.linkedin.com/in/smcdonough/
Twitter: @spmcdonough
Blog: https://SharePointinterface.com/
About: https://spmcdonough.com/

mailto:sean@SharePointInterface.com
mailto:sean.mcdonough@akumina.com
https://www.linkedin.com/in/smcdonough/
https://twitter.com/spmcdonough
https://sharepointinterface.com/
https://spmcdonough.com/

	Slide 1: APPLYING AOP TO INCREASE SOLUTION DEVELOPMENT VELOCITY
	Slide 2: A BIT ABOUT ME …
	Slide 3: WANT THE CODE?
	Slide 4: PROBLEMS SOLVED WITH AOP
	Slide 5: THE EXAMPLE SCENARIO
	Slide 6: THE EXAMPLE SCENARIO
	Slide 7: THE EXAMPLE SCENARIO
	Slide 8: THE EXAMPLE SCENARIO
	Slide 9: THE EXAMPLE SCENARIO
	Slide 10: EXAMPLE 1
	Slide 11: THE EXAMPLE SCENARIO
	Slide 12: THE EXAMPLE SCENARIO
	Slide 13: THE EXAMPLE SCENARIO
	Slide 14: THE EXAMPLE SCENARIO
	Slide 15: EXAMPLE 2
	Slide 16: THE EXAMPLE SCENARIO
	Slide 17: THE EXAMPLE SCENARIO
	Slide 18: THE EXAMPLE SCENARIO
	Slide 19: AND IT ONLY GETS WORSE WITH EACH CONCERN
	Slide 20: AND IT ONLY GETS WORSE WITH EACH CONCERN
	Slide 21: AND IT ONLY GETS WORSE WITH EACH CONCERN
	Slide 22: AND THE WORST PART?
	Slide 23: THERE HAS TO BE A BETTER WAY
	Slide 24: THERE HAS TO BE A BETTER WAY
	Slide 25: THERE HAS TO BE A BETTER WAY
	Slide 26: THAT’S WHAT AOP IS ALL ABOUT
	Slide 27: EXAMPLE 3
	Slide 28: FREQUENTLY ASKED QUESTION
	Slide 29: FREQUENTLY ASKED QUESTION
	Slide 30: FREQUENTLY ASKED QUESTION
	Slide 31: FREQUENTLY ASKED QUESTION
	Slide 32: AOP TOOLS AND PRODUCTS
	Slide 33: IMPLEMENTING AND USING AN ASPECT
	Slide 34: WHAT ABOUT OTHER WAYS TO DO AOP?
	Slide 35: COMPILE TIME *WHAT*?
	Slide 36: AOP DOMAIN CONCEPTS AND TERMS
	Slide 37: AOP DOMAIN CONCEPTS AND TERMS
	Slide 38: AOP DOMAIN CONCEPTS AND TERMS
	Slide 39: AOP DOMAIN CONCEPTS AND TERMS
	Slide 40: AOP DOMAIN CONCEPTS AND TERMS
	Slide 41: AOP DOMAIN CONCEPTS AND TERMS
	Slide 42: AOP DOMAIN CONCEPTS AND TERMS
	Slide 43: AOP DOMAIN CONCEPTS AND TERMS
	Slide 44: AOP DOMAIN CONCEPTS AND TERMS
	Slide 45: COMING SOON HERE NOW!
	Slide 46: GO METALAMA?
	Slide 47: ASPECT TYPES
	Slide 48: ONMETHODBOUNDARYASPECT
	Slide 49: ONMETHODBOUNDARYASPECT
	Slide 50: ONMETHODBOUNDARYASPECT
	Slide 51: METHODINTERCEPTIONASPECT
	Slide 52: METHODINTERCEPTIONASPECT
	Slide 53: METHODINTERCEPTIONASPECT
	Slide 54: OUR REMAINING DEMOS WILL USE …
	Slide 55: EXAMPLES 4+
	Slide 56
	Slide 57: WRAP-UP AND CONTACT INFO
	Slide 58
	Slide 59

